Overblog
Editer l'article Suivre ce blog Administration + Créer mon blog
Vivement l'Ecole!

Mathématiques - Rapport Villani/Torossian: du neuf ou du déjà vu?...

12 Février 2018 , Rédigé par christophe Publié dans #Education, #Mathematiques

Mathématiques - Rapport Villani/Torossian: du neuf ou du déjà vu?...

Alors que messieurs Villani et Torossian remettent ce jour un rapport préconisant 21 mesures permettant de faire progresser nos jeunes élèves en mathématiques, j'invite chacune et chacun à lire ou relire les programmes de 2015.

Ceux-ci exigeaient déjà ce que le rapport remis au Ministre présente comme des "nouveautés".

Cédric Villani, entre autres, avait été consulté pour construire ces programmes.

Christophe Chartreux

                                           _________________________________

Mathématiques

Programmes 2015 cycle 2 (CP/CE1/CE2)

Au cycle 2, la résolution de problèmes est au centre de l'activité mathématique des élèves, développant leurs capacités à chercher, raisonner et communiquer. Les problèmes permettent d'aborder de nouvelles notions, de consolider des acquisitions, de provoquer des questionnements. Ils peuvent être issus de situations de vie de classe ou de situations rencontrées dans d'autres enseignements, notamment « Questionner le monde ». Ils ont le plus souvent possible un caractère ludique. On veillera à proposer aux élèves dès le CP des problèmes pour apprendre à chercher qui ne soient pas de simples problèmes d'application à une ou plusieurs opérations mais nécessitent des recherches avec tâtonnements.

La composante écrite de l'activité mathématique devient essentielle. Ces écrits sont d'abord des écritures et représentations produites en situation par les élèves eux-mêmes qui évoluent progressivement avec l'aide du professeur vers des formes conventionnelles. Il est tout aussi essentiel qu'une activité langagière orale reposant sur une syntaxe et un lexique adaptés accompagne le recours à l'écrit et soit favorisée dans les échanges d'arguments entre élèves. L'introduction et l'utilisation des symboles mathématiques sont réalisées au fur et à mesure qu'ils prennent sens dans des situations d'action, en relation avec le vocabulaire utilisé.

Les élèves consolident leur compréhension des nombres entiers, déjà rencontrés au cycle 1. Ils étudient différentes manières de désigner les nombres, notamment leurs écritures en chiffres, leurs noms à l'oral, les compositions-décompositions fondées sur les propriétés numériques (le double de, la moitié de, etc.), ainsi que les décompositions en unités de numération (unités, dizaines, etc.).

Les quatre opérations (addition, soustraction, multiplication, division) sont étudiées à partir de problèmes qui contribuent à leur donner du sens, en particulier des problèmes portant sur des grandeurs ou sur leurs mesures. La pratique quotidienne du calcul mental conforte la maitrise des nombres et des opérations.

En lien avec le travail mené dans « Questionner le monde » les élèves rencontrent des grandeurs qu'ils apprennent à mesurer, ils construisent des connaissances de l'espace essentielles et abordent l'étude de quelques relations géométriques et de quelques objets (solides et figures planes) en étant confrontés à des problèmes dans lesquels ces connaissances sont en jeu.

Nombres et calculs

La connaissance des nombres entiers et du calcul est un objectif majeur du cycle 2. Elle se développe en appui sur les quantités et les grandeurs, en travaillant selon plusieurs axes.

Des résolutions de problèmes contextualisés : dénombrer des collections, mesurer des grandeurs, repérer un rang dans une liste, prévoir des résultats d'actions portant sur des collections ou des grandeurs (les comparer, les réunir, les augmenter, les diminuer, les partager en parts égales ou inégales, chercher combien de fois l'une est comprise dans l'autre, etc.). Ces actions portent sur des objets tout d'abord matériels puis évoqués à l'oral ou à l'écrit ; le travail de recherche et de modélisation sur ces problèmes permet d'introduire progressivement les quatre opérations (addition, soustraction, multiplication, division).

L'étude de relations internes aux nombres : comprendre que le successeur d'un nombre entier c'est « ce nombre plus un », décomposer/recomposer les nombres additivement, multiplicativement, en utilisant les unités de numération (dizaines, centaines, milliers), changer d'unités de numération de référence, comparer, ranger, itérer une suite (+1, +10, +n), etc.

L'étude des différentes désignations orales et/ou écrites : nom du nombre ; écriture usuelle en chiffres (numération décimale de position) ; double de, moitié de, somme de, produit de ; différence de, quotient et reste de ; écritures en ligne additives/soustractives, multiplicatives, mixtes, en unités de numération, etc.

L'appropriation de stratégies de calcul adaptées aux nombres et aux opérations en jeu. Ces stratégies s'appuient sur la connaissance de faits numériques mémorisés (répertoires additif et multiplicatif, connaissance des unités de numération et de leurs relations, etc.) et sur celle des propriétés des opérations et de la numération. Le calcul mental est essentiel dans la vie quotidienne où il est souvent nécessaire de parvenir rapidement à un ordre de grandeur du résultat d'une opération, ou de vérifier un prix, etc.

Une bonne connaissance des nombres inférieurs à mille et de leurs relations est le fondement de la compréhension des nombres entiers et ce champ numérique est privilégié pour la construction de stratégies de calcul et la résolution des premiers problèmes arithmétiques.

Partager cet article
Repost0
Pour être informé des derniers articles, inscrivez vous :